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1 Confidence Sets and Philosophy of Hypothesis Testing

1.1 Recap: hypothesis tests and p-values

We have been studying hypothesis testing, taking a model P = {Pθ : θ ∈ Θ} and distin-
guishing between two submodels H0 : θ = Θ0 and H1 : θ = Θ1. The hypothesis test is
defined by its critical function φ(x) ∈ [0, 1].

In a simple null vs simple alternative hypothesis, we saw that it was optimal to reject
for large p1

p0
(X). When we have one real parameter (Θ = R, Θ = (0,∞), etc.), this let us

analyze 1-sided tests H0 : θ ≤ θ0 vs H1 : θ > θ0. If p2
p1

is increasing in T (x), for all θ2 > θ1
(MLR), then the UMP test rejects rejects for large T (X). This is also valid if T (X) is
stochastically increasing in θ.

For 2-sided tests, i.e. H0 : θ = θ0 vs H1θ 6= θ (or H0 : θ1 ≤ θ ≤ θ2 vs H1 : θ < θ1 or
θ > θ2), a 2-sided test rejects for extreme T (X), where T (x) is some test statistic. Here
are two ways of making a two tailed test:

• Equal-tailed: Require Pθ0(T (X) > c2) = Pθ0(T (X) < c1) = α/2.

• Unbiased: Require Pθ0(T (X) < c1 or > c2) = α.

Example 1.1. For an exponential family, the 2-tailed unbiased test is UMPU.

The p-value is the level of α for which the test barely rejects:

p(x) = min{α : φα(x) = 1}
often
= Pθ0(T (X) ≥ T (x)).
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The p-value is defined with respect to a family of tests.
For θ ∈ Θ0,

Pθ(p(X) ≤ α) = Pθ(φα(X) = 1) ≤ α,

so p(X) stochastically dominates the uniform distribution on (0, 1).

1.2 Confidence sets

Often, the effect size is a much more relevant question of whether there is an effect or in
what direction the effect is.

Definition 1.1. In a model P = {Pθ : θ ∈ Θ} with an estimand g(θ), C(X) is a 1 − α
confidence set for g(θ) if

Pθ(C(X) 3 g(θ)) ≥ 1− α ∀θ ∈ Θ.

In other words, the probability that we picked a set containing the estimand is ≥ 1−α.

Remark 1.1. Note that we have written C(X) 3 g(θ), rather than the mathematically
equivalent g(θ) ∈ C(X). This is because g(θ) is fixed; it is just the bullseye we are
shooting for. C(X) is the randomly determined object. People misinterpret this as a
statement about g(θ) conditional on the data, which does not make sense from a frequentist
viewpoint.

This should not be called a “confidence” set because confidence is a Bayesian notion.
This should really be called an “interval estimate” instead.

1.3 Duality of confidence sets and testing

How do we make confidence sets? Suppose for every value a, we have a level-α test φ(x;α)
for H0 : g(θ) = a vs H1 : g(θ) 6= a. Let

C(X) = {a : φ(X; a) < 1}
= {all non-rejected values}.

Then for every θ,

Pθ(C(X) 63 g(θ)) = Pθ(φ(X; a) = 1) ≤ α.

Note that the two appearances of θ on the left hand side need to be the same θ.

Remark 1.2. Why don’t we need a correction for multiple testing, if we are making
uncountably many tests? There is only one true null, so we only have 1 chance to make a
type I error.
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The above procedure is called inverting a test to get a confidence set. We can go the
other way: We could rekect H0 : θ ∈ Θ0 if C(X) ∩Θ0 = ∅. For θ ∈ Θ0,

Pθ(test rejects) = Pθ(θ /∈ C(X)) ≤ α.

Example 1.2. A confidence interval is a confidence set C(X) which is an interval
[C1(X), C2(X)]. This is usually obtained by inverting a two-sided test.

Example 1.3. An upper confidence bound is C2(X), where C(X) = (−∞, C2(X)],
and a lower confidence bound is C1(X), where C(X) = [X1(X),∞). These are usually
obtained by inverting a one-sided test.

Definition 1.2. A upper/lower confidence bound is called uniformly most accurate
(UMA) if it inverts a UMP test. A confidence interval is called UMAU if it inversets a
UMPU test.

Example 1.4. Suppose we observe X ∼ Exp(θ) = 1
θe

−x/θ with θ > 0. The CDF is

Pθ(X ≤ x) = 1− e−x/θ.

• To get a lower confidence bound for θ, invert the one-sided test for H0 : θ ≤ θ0. Solve

α = Pθ0(X > c(θ0)) = e−c(θ0)/θ0

to get
c(θ0) = θ0(− logα) > 0.

Now

φ(x; θ0) = 0 ⇐⇒ X ≤ c(θ0)

⇐⇒ θ0 ≥
X

− logα
.

So the confidence region is C(X) = [ X
− logα ,∞).

• For an upper confidence bound, a similar argument gives C(X) = (−∞, X
− log(1−α) ].

• For a confidence interval derived from inverting an equal-tailed test, the equal-tailed
test is

φ2Tα(X; θ0) = φ≥θ0α/2 (X; θ0) + φ≤θ0α/2 (X; θ0),

where these tests test H0 : θ = θ0, H0 : θ ≥ θ0, and H0 : θ ≤ θ0, respectively. Then
the confidence interval is

C(X) =
[

X
− log(α/2) ,∞

)
∩
(
−∞, X

− log(1−α/2)
]

=
[

X
− log(α/2) ,

X
− log(1−α/2)

]
.
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1.4 Philosophy: misinterpreting hypothesis tests and objections to hy-
pothesis testing

Here are some ways people misinterpret hypothesis tests:

1. If p < 0.05, then “there is an effect.”

2. If p > 0.05, then “there is no effect.”

The hypothesis test does not eliminate uncertainty; it just describes or quantifies the
uncertainty.

3. If p = 10−6, then “ the effect is huge.”

4. If p = 10−6, then “the data are significant,” and everything about our model is
incorrect.

5. The effect confidence interval for men is [0.2, 3.2] and for women is [−0.2, 3.8], there-
fore “there is an effect for men and not for women.”

Hypothesis tests ask specific questions about specific data sets under specific modeling
assumptions using a specific testing method. Top tier medical journals, for example, let
people publish claims by reporting p-values without saying what their model was or how
they tested the data. But even if we do hypothesis testing right, here are some more
objections:

1. Why should we ever test H0 : θ = 0? Maybe exact zero effects don’t exist! Here are
some responses:

(a) One answer is that we could test something else, for example H0 : |θ| ≤ δ, where
δ is some minimum effect size we care about. However, in a N(θ, σ2) model, the
power of this δ test = α+O((δ/σ)2)

(b) Usually, directional claims are justified.

(c) In a 2-sample problem, we can test H0 : P = Q vs H1 : P 6= Q, so this is harder
to answer in non-parametric problems.

2. People only like frequentist results like p-values and confidence intervals because they
mistake them for Bayesian results.

3. p-values ignore P(Data | H0) and only look at P(Data | H1). The data could be more
likely under the null than under the alternative.

4. Maybe we should use something else instead of hypothesis testing, since scientists
often misuse hypothesis tests.
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